International real income comparisons
International-comparisons-1980.Rmd
Peter Neary published an important paper in the AER (2004) comparing different approaches to calculating real income indices using the 1980 International Comparison Project (ICP) data – the same data used in the Penn World Table (PWT). Neary proposes an improvement on the PWT use of the Geary-Khamis method for calculating real income. I use Neary’s data to illustrate how to use the functions I provide.
The data and implied indices
Neary uses a set of 11 goods for 60 countries. I have assembled his
data into the Neary2004
data set available with the
pppindexr
package. In addition to prices and “quantites”
(expenditure at US prices), there are country names and population, all
for the ICP baseline year 1980.
I can use the implemented quantity index functions to add the indices to the data. I scale all observations in the minimum (Ethiopia), the same way that Neary does for his Table 1 and Figure 1.
First I extract the price and quantity matrices (or, in fact, dataframes):
P <- Neary2004[, c("p1","p2","p3","p4","p5","p6","p7","p8","p9","p10","p11")]
Q <- Neary2004[, c("q1","q2","q3","q4","q5","q6","q7","q8","q9","q10","q11")]
Then I add the indices to the Neary2004 dataset. I enter two different Geary-Khamis numbers: one with and one without weighting by population size.
Neary2004$eks = eks(P,Q)
Neary2004$ccd = ccd(P,Q)
Neary2004$gk = ygk(P,Q, min_scale = TRUE)
Neary2004$gk_pop = ygk(P,Q, pop=Neary2004$pop1980, min_scale = TRUE)
Now I list the data to compare it to Table 1 of Neary:
country | eks | ccd | gk | gk_pop |
---|---|---|---|---|
Germany | 30.017 | 29.859 | 25.503 | 25.594 |
Denmark | 28.995 | 28.645 | 24.699 | 25.052 |
Belgium | 29.085 | 28.982 | 24.851 | 25.072 |
France | 29.338 | 29.319 | 25.021 | 25.393 |
USA | 36.120 | 35.653 | 30.624 | 30.603 |
Luxembourg | 30.066 | 30.016 | 26.114 | 26.098 |
Netherlands | 28.265 | 28.013 | 23.993 | 24.305 |
Norway | 23.571 | 23.445 | 20.591 | 20.781 |
Austria | 26.636 | 26.607 | 22.905 | 23.267 |
Canada | 34.171 | 34.033 | 29.230 | 29.280 |
UK | 25.304 | 25.251 | 21.614 | 22.085 |
Finland | 22.089 | 22.000 | 19.061 | 19.351 |
Japan | 21.630 | 21.597 | 19.102 | 19.719 |
Italy | 24.784 | 24.755 | 21.596 | 21.861 |
Spain | 21.070 | 21.196 | 18.226 | 18.295 |
Ireland | 16.978 | 17.217 | 14.638 | 14.951 |
Argentina | 11.752 | 11.903 | 10.451 | 10.301 |
Israel | 18.791 | 18.685 | 16.525 | 16.981 |
Hong Kong | 22.450 | 22.530 | 20.783 | 21.103 |
Greece | 16.531 | 16.601 | 14.297 | 14.269 |
Uruguay | 14.497 | 14.645 | 13.226 | 13.313 |
Venezuela | 14.085 | 14.161 | 12.566 | 12.621 |
Portugal | 13.741 | 13.887 | 12.340 | 12.450 |
Yugoslavia | 11.011 | 10.876 | 9.821 | 9.983 |
Chile | 10.755 | 10.811 | 9.396 | 9.469 |
Poland | 12.156 | 12.198 | 10.545 | 10.694 |
Brazil | 11.347 | 11.297 | 10.045 | 10.082 |
Costa Rica | 10.270 | 10.264 | 9.115 | 9.238 |
Hungary | 13.285 | 13.152 | 12.017 | 12.289 |
Panama | 8.026 | 8.066 | 7.142 | 7.212 |
Paraguay | 7.576 | 7.554 | 6.686 | 6.687 |
Korea | 6.679 | 6.834 | 6.491 | 6.429 |
Dominican Rep | 7.635 | 7.561 | 6.820 | 6.875 |
Columbia | 9.813 | 9.862 | 8.758 | 8.709 |
Ecuador | 7.161 | 7.172 | 6.719 | 6.787 |
Tunisia | 6.201 | 6.149 | 5.583 | 5.582 |
Guatemala | 8.624 | 8.470 | 8.077 | 8.227 |
Cote d’Ivoire | 3.410 | 3.396 | 2.924 | 2.888 |
Peru | 7.685 | 7.592 | 7.065 | 7.047 |
Bolivia | 4.464 | 4.493 | 4.172 | 4.140 |
Nigeria | 2.355 | 2.375 | 2.120 | 2.100 |
Botswana | 3.658 | 3.676 | 3.285 | 3.283 |
Morocco | 3.896 | 3.870 | 3.520 | 3.501 |
Cameroon | 2.803 | 2.804 | 2.509 | 2.507 |
El Salvador | 4.804 | 4.824 | 4.413 | 4.403 |
Philippines | 5.891 | 5.907 | 5.096 | 5.184 |
Honduras | 4.079 | 4.051 | 3.642 | 3.663 |
Zimbabwe | 2.674 | 2.711 | 2.371 | 2.341 |
Senegal | 2.442 | 2.438 | 2.266 | 2.229 |
Zambia | 1.620 | 1.629 | 1.421 | 1.414 |
Indonesia | 2.958 | 2.946 | 2.802 | 2.735 |
Madagascar | 1.974 | 1.963 | 1.862 | 1.829 |
Pakistan | 4.175 | 3.983 | 3.624 | 3.645 |
Kenya | 2.052 | 2.055 | 1.938 | 1.946 |
Sri Lanka | 4.377 | 4.402 | 4.246 | 4.229 |
Tanzania | 1.186 | 1.187 | 1.135 | 1.138 |
India | 1.716 | 1.730 | 1.602 | 1.587 |
Mali | 1.187 | 1.128 | 1.073 | 1.036 |
Malawi | 1.260 | 1.282 | 1.208 | 1.193 |
Ethiopia | 1.000 | 1.000 | 1.000 | 1.000 |
Inspecting the table, the eks
, the ccd
, and
the gk
columns replicate exactly the corresponding columns
in Table 1 of Neary (2004), The population weighted Geary Khamis
(gk_pop
) numbers are slightly different from the ones
reported by Neary (gk
). This means that Neary calculated
Geary-Khamis quantities without population weighting, which I believe is
contrary to standard practice - it means that subdividing gdp by region
within a country (with uniform within-country prices) will lead to
different world prices, and hence also different real income
indices.
The Geary Khamis world prices are calculated as follows:
prices <- data.frame(N = 1:11,
p_gk = pgk(P,Q),
p_gk_pop = pgk(P,Q, pop=Neary2004$pop1980))
prices |> knitr::kable(digits=3)
N | p_gk | p_gk_pop |
---|---|---|
1 | 1.452 | 1.303 |
2 | 1.432 | 1.244 |
3 | 1.427 | 1.302 |
4 | 1.439 | 1.307 |
5 | 0.971 | 0.961 |
6 | 1.769 | 1.428 |
7 | 1.383 | 1.245 |
8 | 0.669 | 0.724 |
9 | 1.472 | 1.227 |
10 | 0.930 | 0.932 |
11 | 1.000 | 1.000 |
References
- Peter J. Neary (2004). “Rationalizing the Penn World Table: True Multilateral Indices for International Comparisons of Real Income.” American Economic Review, 94 (5): 1411-1428. [https://www.aeaweb.org/articles?id=10.1257/0002828043052286]